Invariant states of linear quantum stochastic systems under Weyl perturbations of the Hamiltonian and coupling operators
نویسندگان
چکیده
This paper is concerned with the sensitivity of invariant states in linear quantum stochastic systems with respect to nonlinear perturbations. The system variables are governed by a Markovian Hudson-Parthasarathy quantum stochastic differential equation (QSDE) driven by quantum Wiener processes of external bosonic fields in the vacuum state. The quadratic system Hamiltonian and the linear system-field coupling operators, corresponding to a nominal open quantum harmonic oscillator, are subject to perturbations represented in a Weyl quantization form. Assuming that the nominal linear QSDE has a Hurwitz dynamics matrix and using the Wigner-Moyal phasespace framework, we carry out an infinitesimal perturbation analysis of the quasi-characteristic function for the invariant quantum state of the nonlinear perturbed system. The resulting correction of the invariant states in the spatial frequency domain may find applications to their approximate computation, analysis of relaxation dynamics and non-Gaussian state generation in nonlinear quantum stochastic systems.
منابع مشابه
Evolution of quasi-characteristic functions in quantum stochastic systems with Weyl quantization of energy operators
This paper considers open quantum systems whose dynamic variables satisfy canonical commutation relations and are governed by Markovian Hudson-Parthasarathy quantum stochastic differential equations driven by external bosonic fields. The dependence of the Hamiltonian and the system-field coupling operators on the system variables is represented using the Weyl functional calculus. This leads to ...
متن کاملO ct 1 99 8 ALGEBRAIC EXACT SOLVABILITY OF TRIGONOMETRIC - TYPE HAMILTONIANS ASSOCIATED TO ROOT SYSTEMS
In this article, we study and settle several structural questions concerning the exact solvability of the Olshanetsky-Perelomov quantum Hamiltonians corresponding to an arbitrary root system. We show that these operators can be written as linear combinations of certain basic operators admitting infinite flags of invariant subspaces, namely the Laplacian and the logarithmic gradient of invariant...
متن کاملروش انتگرال مسیر برای مدل هابارد تک نواره
We review various ways to express the partition function of the single-band Hubard model as a path integral. The emphasis is made on the derivation of the action in the integrand of the path integral and the results obtained from this approach are discussed only briefly. Since the single-band Hubbard model is a pure fermionic model on the lattice and its Hamiltonian is a polynomial in creat...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملA numerical renormalization group approach for calculating the spectrum of a vibronic system occurring in molecules or impurities in insulators
Theoretically, in order to describe the behavior of a spectrum, a mathematical model whichcould predict the spectrum characteristics is needed. Since in this study a Two-state system has beenused like models which was introduced previously past and could couple with the environment, theformer ideas have been extended in this study. we use the second quantized version for writing thisHamiltonian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.03503 شماره
صفحات -
تاریخ انتشار 2017